High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization.

نویسندگان

  • Jeffrey R Moffitt
  • Junjie Hao
  • Guiping Wang
  • Kok Hao Chen
  • Hazen P Babcock
  • Xiaowei Zhuang
چکیده

Image-based approaches to single-cell transcriptomics, in which RNA species are identified and counted in situ via imaging, have emerged as a powerful complement to single-cell methods based on RNA sequencing of dissociated cells. These image-based approaches naturally preserve the native spatial context of RNAs within a cell and the organization of cells within tissue, which are important for addressing many biological questions. However, the throughput of these image-based approaches is relatively low. Here we report advances that lead to a drastic increase in the measurement throughput of multiplexed error-robust fluorescence in situ hybridization (MERFISH), an image-based approach to single-cell transcriptomics. In MERFISH, RNAs are identified via a combinatorial labeling approach that encodes RNA species with error-robust barcodes followed by sequential rounds of single-molecule fluorescence in situ hybridization (smFISH) to read out these barcodes. Here we increase the throughput of MERFISH by two orders of magnitude through a combination of improvements, including using chemical cleavage instead of photobleaching to remove fluorescent signals between consecutive rounds of smFISH imaging, increasing the imaging field of view, and using multicolor imaging. With these improvements, we performed RNA profiling in more than 100,000 human cells, with as many as 40,000 cells measured in a single 18-h measurement. This throughput should substantially extend the range of biological questions that can be addressed by MERFISH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybridization biases of microarray expression data A model-based analysis of RNA quality and sequence effects

Modern high-throughput technologies like DNA microarrays are powerful tools that are widely used in biomedical research. They target a variety of genomics applications ranging from gene expression profiling over DNA genotyping to gene regulation studies. However, the recent discovery of false positives among prominent research findings indicates a lack of awareness or understanding of the non-b...

متن کامل

Detection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour Interphase Fluorescence in situ Hybridisation

Conventional cytogenetic is the standard technique for detection of Philadelphia (Ph) chromosome in chronic myeloid leukemia (CML). Evaluation of abelson murine leukemia/breakpoint cluster region (abl/bcr) fusion using dual-colour fluorescence in situ hybridization (D-FISH) is an alternative approach allowing rapid and reliable detection of the disease. We employed the technique of interphase D...

متن کامل

Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer

ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-...

متن کامل

High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing.

Highly multiplexed single-molecule FISH has emerged as a promising approach to spatially resolved single-cell transcriptomics because of its ability to directly image and profile numerous RNA species in their native cellular context. However, background-from off-target binding of FISH probes and cellular autofluorescence-can become limiting in a number of important applications, such as increas...

متن کامل

Fluorescent in Situ Hybridization and Real-Time Quantitative Polymerase Chain Reaction to Evaluate HER-2/neu Status in Breast Cancer

Background:Breast cancer remains the most common and second lethal cancer in females. HER-2/neu is one of the most important amplified oncogene in breast cancer. The amplification of HER-2 is correlated with decreased survival, metastasis, and early recurrence.  The amplification of HER-2/neu gene and synthesis of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 39  شماره 

صفحات  -

تاریخ انتشار 2016